
17

Structure 1: Code Elements
This unit introduces the most basic elements and vocabulary for writing software.

Syntax introduced:
// (comment), /* */ (multiline comment)
“;” (statement terminator), “,” (comma)
print(), println()

Creating software is an act of writing. Before starting to write code, it’s important to
acknowledge the difference between writing a computer program and writing an Email
or an essay. Writing in a human language allows the author to utilize the ambiguity
of words and to have great fl exibility in constructing phrases. These techniques allow
multiple interpretations of a single text and give each author a unique voice. Each
computer program also reveals the style of its author, but there is far less room for
ambiguity. While people can interpret vague meanings and can usually disregard poor
grammar, computers cannot. Some of the linguistic details of writing code are discussed
here to prevent early frustration. If you keep these details in mind as you begin to
program, they will gradually become habitual. This unit presents variations of a simple
program that sets the size and background color of the display window, demonstrating
some of the most basic elements of writing code with Processing.

Comments

Comments are ignored by the computer but are important for people. They let you write
notes to yourself and to others who read your programs. Because programs use symbols
and arcane notation to describe complex procedures, it is often diffi cult to remember
how individual parts of a program work. Good comments serve as reminders when you
revisit a program and explain your thoughts to others reading the code. Commented
sections appear in a different color than the rest of the code. This program explains how
comments work:

// Two forward slashes are used to denote a comment.
// All text on the same line is a part of the comment.
// There must be no spaces between the slashes. For example,
// the code "/ /" is not a comment and will cause an error

// If you want to have a comment that is many
// lines long, you may prefer to use the syntax for a
// multiline comment

1-01

Reas_01_001-084.indd Sec2:17Reas_01_001-084.indd Sec2:17 5/23/07 1:20:29 PM5/23/07 1:20:29 PM

18 Structure 1: Code Elements

/*
 A forward slash followed by an asterisk allows the
 comment to continue until the opposite
*/

// All letters and symbols that are not comments are translated
// by the compiler. Because the following lines are not comments,
// they are run and draw a display window of 200 x 200 pixels
size(200, 200);
background(102);

Functions

Functions allow you to draw shapes, set colors, calculate numbers, and to execute
many other types of actions. A function’s name is usually a lowercase word followed
by parentheses. The comma-separated elements between the parentheses are called
parameters, and they affect the way the function works. Some functions have no
parameters and others have many. This program demonstrates the size() and
background() functions.

// The size function has two parameters. The first sets the width
// of the display window and the second sets the height
size(200, 200);

// This version of the background function has one parameter.
// It sets the gray value for the background of the display window
// in the range of 0 (black) to 255 (white)
background(102);

Expressions, Statements

Using an analogy to human languages, a software expression is like a phrase. Software
expressions are often combinations of operators such as +, *, and / that operate on the
values to their left and right. A software expression can be as basic as a single number or
can be a long combination of elements. An expression always has a value, determined by
evaluating its contents.

 Expression Value
 5 5

 122.3+3.1 125.4

 ((3+2)*-10) + 1 -49

1-01
cont.

1-02

Reas_01_001-084.indd Sec2:18Reas_01_001-084.indd Sec2:18 5/23/07 1:20:29 PM5/23/07 1:20:29 PM

19 Structure 1: Code Elements

Expressions can also compare two values with operators such as > (greater than) and
< (less than). These comparisons are evaluated as true or false.

 Expression Value
 6 > 3 true

 54 < 50 false

A set of expressions together create a statement, the programming equivalent
of a sentence. It’s a complete unit that ends with the statement terminator, the
programming equivalent of a period. In the Processing language, the statement
terminator is a semicolon.
 Just as there are different types of sentences, there are different types of statements.
A statement can defi ne a variable, assign a variable, run a function, or construct an
object. Each will be explained in more detail later, but examples are shown here:

size(200, 200); // Runs the size() function
int x; // Declares a new variable x
x = 102; // Assigns the value 102 to the variable x
background(x); // Runs the background() function

Omitting the semicolon at the end of a statement, a very common mistake, will result
in an error message, and the program will not run.

Anatomy of a program
Every program is composed of different language elements. These elements work together to describe
the intentions of the programmer so they can be interpreted by a computer. The anatomy of a more
complicated program is shown on page 176.

Comment

Parameter

Statement

Statement terminatorFunction

// Create a 300 x 400 window
size(300, 400);
background(0);

1-03

Reas_01_001-084.indd Sec2:19Reas_01_001-084.indd Sec2:19 5/23/07 1:20:29 PM5/23/07 1:20:29 PM

20 Structure 1: Code Elements

Case sensitivity

In written English, some words are capitalized and others are not. Proper nouns like Ohio
and John and the fi rst letter of every sentence are capitalized, while most other words
are lowercase. In many programming languages, some parts of the language must be
capitalized and others must be lowercase. Processing differentiates between uppercase
and lowercase characters; therefore, writing “Size” when you mean to write “size” creates
an error. You must be exacting in adhering to the capitalization rules.

size(200, 200);
Background(102); // ERROR! The B in "background" is capitalized

Whitespace
In many programming languages, including Processing, there can be an arbitrary
amount of space between the elements of a program. Unlike the rigorous syntax of
statement terminators, spacing does not matter. The following two lines of code are
a standard way of writing a program:

size(200, 200);
background(102);

However, the whitespace between the code elements can be set to any amount and the
program will run exactly the same way:

size

(200,
 200) ;
background (102)
 ;

Console
When software runs, the computer performs operations at a rate too fast to perceive
with human eyes. Because it is important to understand what is happening inside the
machine, the functions print() and println() can be used to display data while a
program is running. These functions don’t send pages to a printer, but instead write text
to the console (pp. 8, 9). The console can be used to display a variable, confi rm an event,
or check incoming data from an external device. Such uses might not seem clear now,
but they will reveal themselves over the course of this book. Like comments, print()
and println() can clarify the intentions and execution of computer programs.

1-04

1-05

1-06

Reas_01_001-084.indd Sec2:20Reas_01_001-084.indd Sec2:20 5/23/07 1:20:30 PM5/23/07 1:20:30 PM

21 Structure 1: Code Elements

// To print text to the screen, place the desired output in quotes
println("Processing..."); // Prints "Processing..." to the console

// To print the value of a variable, rather than its name,
// don’t put the name of the variable in quotes
int x = 20;
println(x); // Prints "20" to the console

// While println() moves to the next line after the text
// is output, print() does not
print("10");
println("20"); // Prints "1020" to the console
println("30"); // Prints "30" to the console

// The "+" operator can be used for combining multiple text
// elements into one line
int x2 = 20;
int y2 = 80;
println(x2 + " : " + y2); // Prints "20 : 80" to the message window

 Exercises
1. Write comments in the text area explaining a piece of software you
 would like to write.
2. Write a program to make a 640 * 480 pixel display window with a black
 background.
3. Use print() and println() to write some text to the console.

1-07

Reas_01_001-084.indd Sec2:21Reas_01_001-084.indd Sec2:21 5/23/07 1:20:30 PM5/23/07 1:20:30 PM

Reas_01_001-084.indd Sec2:22Reas_01_001-084.indd Sec2:22 5/23/07 1:20:30 PM5/23/07 1:20:30 PM

23

Shape 1: Coordinates, Primitives
This unit introduces the coordinate system of the display window and a variety
of geometric shapes.

Syntax introduced:
size(), point(), line(), triangle(), quad(), rect(), ellipse(), bezier()
background(), fill(), stroke(), noFill(), noStroke()
strokeWeight(), strokeCap(), strokeJoin()
smooth(), noSmooth(), ellipseMode(), rectMode()

Drawing a shape with code can be diffi cult because every aspect of its location must be
specifi ed with a number. When you’re accustomed to drawing with a pencil or moving
shapes around on a screen with a mouse, it can take time to start thinking in relation
to the screen’s strict coordinate grid. The mental gap between seeing a composition on
paper or in your mind and translating it into code notation is wide, but easily bridged.

Coordinates

Before making a drawing, it’s important to think about the dimensions and qualities of
the surface to which you’ll be drawing. If you’re making a drawing on paper, you can
choose from myriad utensils and papers. For quick sketching, newsprint and charcoal
are appropriate. For a refi ned drawing, a smooth handmade paper and range of pencils
may be preferred. In contrast, when you are drawing to a computer’s screen, the primary
options available are the size of the window and the background color.
 A computer screen is a grid of small light elements called pixels. Screens come in
many sizes and resolutions. We have three different types of computer screens in our
studios, and they all have a different number of pixels. The laptops have 1,764,000 pixels
(1680 wide * 1050 high), the fl at panels have 1,310,720 pixels (1280 wide * 1024 high),
and the older monitors have 786,432 pixels (1024 wide * 768 high). Millions of pixels
may sound like a vast quantity, but they produce a poor visual resolution compared
to physical media such as paper. Contemporary screens have a resolution around 100
dots per inch, while many modern printers provide more than 1000 dots per inch. On
the other hand, paper images are fi xed, but screens have the advantage of being able to
change their image many times per second.
 Processing programs can control all or a subset of the screen’s pixels. When you
click the Run button, a display window opens and allows access to reading and writing
the pixels within. It’s possible to create images larger than the screen, but in most cases
you’ll make a window the size of the screen or smaller.

Reas_01_001-084.indd Sec2:23Reas_01_001-084.indd Sec2:23 5/23/07 1:20:31 PM5/23/07 1:20:31 PM

24 Shape 1: Coordinates, Primitives

The size of the display window is controlled with the size() function:

 size(width, height)

The size() function has two parameters: the fi rst sets the width of the window and the
second sets its height.

 // Draw the display window 120 pixels
 // wide and 200 pixels high
 size(120, 200);

 // Draw the display window 320 pixels
 // wide and 240 pixels high
 size(320, 240);

 // Draw the display window 200 pixels
 // wide and 200 pixels high
 size(200, 200);

2-01

2-02

2-03

Reas_01_001-084.indd Sec2:24Reas_01_001-084.indd Sec2:24 5/23/07 1:20:32 PM5/23/07 1:20:32 PM

25 Shape 1: Coordinates, Primitives

A position on the screen is comprised of an x-coordinate and a y-coordinate. The
x-coordinate is the horizontal distance from the origin and the y-coordinate is the
vertical distance. In Processing, the origin is the upper-left corner of the display window
and coordinate values increase down and to the right. The image on the left shows the
coordinate system, and the image on the right shows a few coordinates placed on
the grid:

A position is written as the x-coordinate value followed by the y-coordinate, separated
with a comma. The notation for the origin is (0,0), the coordinate (50,50) has an
x-coordinate of 50 and a y-coordinate of 50, and the coordinate (20,60) is an x-coordinate
of 20 and a y-coordinate of 60. If the size of the display window is 100 pixels wide and
100 pixels high, (0,0) is the pixel in the upper-left corner, (99,0) is the pixel in the upper-
right corner, (0,99) is the pixel in the lower-left corner, and (99,99) is the pixel in the
lower-right corner. This becomes clearer when we look at examples using point().

Primitive shapes

A point is the simplest visual element and is drawn with the point() function:

 point(x, y)

This function has two parameters: the fi rst is the x-coordinate and the second is the
y-coordinate. Unless specifi ed otherwise, a point is the size of a single pixel.

 // Points with the same X and Y parameters
 // form a diagonal line from the
 // upper-left corner to the lower-right corner
 point(20, 20);
 point(30, 30);
 point(40, 40);
 point(50, 50);
 point(60, 60);

0
0

20

20

40

40

60

60

80

80

100 (0,0) (99,0)

(99,99)
100

X

Y

(0,99)

(50,50)

(60,80)

(20,60)

2-04

Reas_01_001-084.indd Sec2:25Reas_01_001-084.indd Sec2:25 5/23/07 1:20:32 PM5/23/07 1:20:32 PM

26 Shape 1: Coordinates, Primitives

 // Points with the same Y parameter have the
 // same distance from the top and bottom
 // edges of the frame
 point(50, 30);
 point(55, 30);
 point(60, 30);
 point(65, 30);
 point(70, 30);

 // Points with the same X parameter have the
 // same distance from the left and right
 // edges of the frame
 point(70, 50);
 point(70, 55);
 point(70, 60);
 point(70, 65);
 point(70, 70);

 // Placing a group of points next to one
 // another creates a line
 point(50, 50);
 point(50, 51);
 point(50, 52);
 point(50, 53);
 point(50, 54);
 point(50, 55);
 point(50, 56);
 point(50, 57);
 point(50, 58);
 point(50, 59);

 // Setting points outside the display
 // area will not cause an error,
 // but the points won't be visible
 point(-500, 100);
 point(400, -600);
 point(140, 2500);
 point(2500, 100);

2-05

2-06

2-07

2-08

Reas_01_001-084.indd Sec2:26Reas_01_001-084.indd Sec2:26 5/23/07 1:20:33 PM5/23/07 1:20:33 PM

27 Shape 1: Coordinates, Primitives

While it’s possible to draw any line as a series of points, lines are more simply drawn
with the line() function. This function has four parameters, two for each endpoint:

 line(x1, y1, x2, y2)

The fi rst two parameters set the position where the line starts and the last two set the
position where the line stops.

 // When the y-coordinates for a line are the
 // same, the line is horizontal
 line(10, 30, 90, 30);
 line(10, 40, 90, 40);
 line(10, 50, 90, 50);

 // When the x-coordinates for a line are the
 // same, the line is vertical
 line(40, 10, 40, 90);
 line(50, 10, 50, 90);
 line(60, 10, 60, 90);

 // When all four parameters are different,
 // the lines are diagonal
 line(25, 90, 80, 60);
 line(50, 12, 42, 90);
 line(45, 30, 18, 36);

 // When two lines share the same point they connect
 line(15, 20, 5, 80);
 line(90, 65, 5, 80);

The triangle() function draws triangles. It has six parameters, two for each point:

 triangle(x1, y1, x2, y2, x3, y3)

The fi rst pair defi nes the fi rst point, the middle pair the second point, and the last
pair the third point. Any triangle can be drawn by connecting three lines, but the
triangle() function makes it possible to draw a fi lled shape. Triangles of all shapes
and sizes can be created by changing the parameter values.

 triangle(60, 10, 25, 60, 75, 65); // Filled triangle
 line(60, 30, 25, 80); // Outlined triangle edge
 line(25, 80, 75, 85); // Outlined triangle edge
 line(75, 85, 60, 30); // Outlined triangle edge

2-09

2-10

2-11

2-12

2-13

Reas_01_001-084.indd Sec2:27Reas_01_001-084.indd Sec2:27 5/23/07 1:20:33 PM5/23/07 1:20:33 PM

Geometry primitives
Processing has seven functions to assist in making simple shapes. These images show the format for each. Replace
the parameters with numbers to use them within a program. These functions are demonstrated in codes 2-04 to 2-22.

point(x, y)

line(x1, y1, x2, y2)

triangle(x1, y1, x2, y2, x3, y3)

quad(x1, y1, x2, y2, x3, y3, x4, y4)

(x,y)

rect(x, y, width, height)

ellipse(x, y, width, height)

bezier(x1, y1, cx1, cy1, cx2, cy2, x2, y2)

(x1,y1)

(x2,y2)

(x1,y1)

(x1,y1) (cx1,cy1)

(x2,y2) (cx2,cy2)

(x3,y3)(x2,y2)

(x1,y1) (x4,y4)

(x3,y3)(x2,y2)

(x,y)

height

width

height

width

(x,y)

Reas_01_001-084.indd Sec2:28Reas_01_001-084.indd Sec2:28 5/23/07 1:20:34 PM5/23/07 1:20:34 PM

29 Shape 1: Coordinates, Primitives

 triangle(55, 9, 110, 100, 85, 100);
 triangle(55, 9, 85, 100, 75, 100);
 triangle(-1, 46, 16, 34, -7, 100);
 triangle(16, 34, -7, 100, 40, 100);

The quad() function draws a quadrilateral, a four-sided polygon. The function has eight
parameters, two for each point.

 quad(x1, y1, x2, y2, x3, y3, x4, y4)

Changing the parameter values can yield rectangles, squares, parallelograms, and
irregular quadrilaterals.

 quad(38, 31, 86, 20, 69, 63, 30, 76);

 quad(20, 20, 20, 70, 60, 90, 60, 40);
 quad(20, 20, 70, -20, 110, 0, 60, 40);

Drawing rectangles and ellipses works differently than the shapes previously
introduced. Instead of defi ning each point, the four parameters set the position and the
dimensions of the shape. The rect() function draws a rectangle:

 rect(x, y, width, height)

The fi rst two parameters set the location of the upper-left corner, the third sets the
width, and the fourth sets the height. Use the same value for the width and height
parameters to draw a square.

 rect(15, 15, 40, 40); // Large square
 rect(55, 55, 25, 25); // Small square

 rect(0, 0, 90, 50);
 rect(5, 50, 75, 4);
 rect(24, 54, 6, 6);
 rect(64, 54, 6, 6);
 rect(20, 60, 75, 10);
 rect(10, 70, 80, 2);

2-14

2-15

2-16

2-17

2-18

Reas_01_001-084.indd Sec2:29Reas_01_001-084.indd Sec2:29 5/23/07 1:20:34 PM5/23/07 1:20:34 PM

30 Shape 1: Coordinates, Primitives

The ellipse() function draws an ellipse in the display window:

 ellipse(x, y, width, height)

The fi rst two parameters set the location of the center of the ellipse, the third sets the
width, and the fourth sets the height. Use the same value for the width and height
parameters to draw a circle.

 ellipse(40, 40, 60, 60); // Large circle
 ellipse(75, 75, 32, 32); // Small circle

 ellipse(35, 0, 120, 120);
 ellipse(38, 62, 6, 6);
 ellipse(40, 100, 70, 70);

The bezier() function can draw lines that are not straight. A Bézier curve is defi ned by
a series of control points and anchor points. A curve is drawn between the anchor points,
and the control points defi ne its shape:

 bezier(x1, y1, cx1, cy1, cx2, cy2, x2, y2)

The function requires eight parameters to set four points. The curve is drawn between
the fi rst and fourth points, and the control points are defi ned by the second and third
points. In software that uses Bézier curves, such as Adobe Illustrator, the control points
are represented by the tiny handles that protrude from the edge of a curve.

 bezier(32, 20, 80, 5, 80, 75, 30, 75);
 // Draw the control points
 line(32, 20, 80, 5);
 ellipse(80, 5, 4, 4);
 line(80, 75, 30, 75);
 ellipse(80, 75, 4, 4);

 bezier(85, 20, 40, 10, 60, 90, 15, 80);
 // Draw the control points
 line(85, 20, 40, 10);
 ellipse(40, 10, 4, 4);
 line(60, 90, 15, 80);
 ellipse(60, 90, 4, 4);

2-19

2-20

2-21

2-22

Reas_01_001-084.indd Sec2:30Reas_01_001-084.indd Sec2:30 5/23/07 1:20:35 PM5/23/07 1:20:35 PM

31 Shape 1: Coordinates, Primitives

Drawing order
The order in which shapes are drawn in the code defi nes which shapes appear on top of
others in the display window. If a rectangle is drawn in the fi rst line of a program, it is
drawn behind an ellipse drawn in the second line of the program. Reversing the order
places the rectangle on top.

 rect(15, 15, 50, 50); // Bottom
 ellipse(60, 60, 55, 55); // Top

 ellipse(60, 60, 55, 55); // Bottom
 rect(15, 15, 50, 50); // Top

Gray values

The examples so far have used the default light-gray background, black lines, and white
shapes. To change these default values, it’s necessary to introduce additional syntax. The
background() function sets the color of the display window with a number between 0
and 255. This range may be awkward if you’re not familiar with drawing software on the
computer. The value 255 is white and the value 0 is black, with a range of gray values in
between. If no background value is defi ned, the default value 204 (light gray) is used.

 background(0);

 background(124);

 background(230);

2-23

2-24

2-25

2-26

2-27

Reas_01_001-084.indd Sec2:31Reas_01_001-084.indd Sec2:31 5/23/07 1:20:35 PM5/23/07 1:20:35 PM

32 Shape 1: Coordinates, Primitives

The fill() function sets the fi ll value of shapes, and the stroke() function sets the
outline value of the drawn shapes. If no fi ll value is defi ned, the default value of 255
(white) is used. If no stroke value is defi ned, the default value of 0 (black) is used.

 rect(10, 10, 50, 50);
 fill(204); // Light gray
 rect(20, 20, 50, 50);
 fill(153); // Middle gray
 rect(30, 30, 50, 50);
 fill(102); // Dark gray
 rect(40, 40, 50, 50);

 background(0);
 rect(10, 10, 50, 50);
 stroke(102); // Dark gray
 rect(20, 20, 50, 50);
 stroke(153); // Middle gray
 rect(30, 30, 50, 50);
 stroke(204); // Light gray
 rect(40, 40, 50, 50);

Once a fi ll or stroke value is defi ned, it applies to all shapes drawn afterward. To change
the fi ll or stroke value, use the fill() or stroke() function again.

 fill(255); // White
 rect(10, 10, 50, 50);
 rect(20, 20, 50, 50);
 rect(30, 30, 50, 50);
 fill(0); // Black
 rect(40, 40, 50, 50);

An optional second parameter to fill() and stroke() controls transparency. Setting
the parameter to 255 makes the shape entirely opaque, and 0 is totally transparent:

 background(0);
 fill(255, 220);
 rect(15, 15, 50, 50);
 rect(35, 35, 50, 50);

 fill(0);
 rect(0, 40, 100, 20);
 fill(255, 51); // Low opacity
 rect(0, 20, 33, 60);
 fill(255, 127); // Medium opacity

2-28

2-29

2-30

2-31

2-32

Reas_01_001-084.indd Sec2:32Reas_01_001-084.indd Sec2:32 5/23/07 1:20:35 PM5/23/07 1:20:35 PM

33 Shape 1: Coordinates, Primitives

 rect(33, 20, 33, 60);
 fill(255, 204); // High opacity
 rect(66, 20, 33, 60);

The stroke and fi ll of a shape can be disabled. The noFill() function stops Processing
from fi lling shapes, and the noStroke() function stops lines from being drawn and
shapes from having outlines. If noFill() and noStroke() are both used, nothing will
be drawn to the screen.

 rect(10, 10, 50, 50);
 noFill(); // Disable the fill
 rect(20, 20, 50, 50);
 rect(30, 30, 50, 50);

 rect(20, 15, 20, 70);
 noStroke(); // Disable the stroke
 rect(50, 15, 20, 70);
 rect(80, 15, 20, 70);

Setting color fi ll and stroke values is introduced in Color 1 (p. 85).

Drawing attributes

In addition to changing the fi ll and stroke values of shapes, it’s also possible to change
attributes of the geometry. The smooth() and noSmooth() functions enable and
disable smoothing (also called antialiasing). Once these functions are used, all shapes
drawn afterward are affected. If smooth() is used fi rst, using noSmooth() cancels the
setting, and vice versa.

 ellipse(30, 48, 36, 36);
 smooth();
 ellipse(70, 48, 36, 36);

 smooth();
 ellipse(30, 48, 36, 36);
 noSmooth();
 ellipse(70, 48, 36, 36);

Line attributes are controlled by the strokeWeight(), strokeCap(), and
strokeJoin() functions. The strokeWeight() function has one numeric parameter
that sets the thickness of all lines drawn after the function is used. The strokeCap()
function requires one parameter that can be either ROUND, SQUARE, or PROJECT.

2-32
cont.

2-33

2-34

2-35

2-36

Reas_01_001-084.indd Sec2:33Reas_01_001-084.indd Sec2:33 5/23/07 1:20:36 PM5/23/07 1:20:36 PM

34 Shape 1: Coordinates, Primitives

ROUND makes round endpoints, and SQUARE squares them. PROJECT is a mix of the two
that extends a SQUARE endpoint by the radius of the line. The strokeJoin() function
has one parameter that can be either BEVEL, MITER, or ROUND. These parameters
determine the way line segments or the stroke around a shape connects. BEVEL causes
lines to join with squared corners, MITER is the default and joins lines with pointed
corners, and ROUND creates a curve.

 smooth();
 line(20, 20, 80, 20); // Default line weight of 1
 strokeWeight(6);
 line(20, 40, 80, 40); // Thicker line
 strokeWeight(18);
 line(20, 70, 80, 70); // Beastly line

 smooth();
 strokeWeight(12);
 strokeCap(ROUND);
 line(20, 30, 80, 30); // Top line
 strokeCap(SQUARE);
 line(20, 50, 80, 50); // Middle line
 strokeCap(PROJECT);
 line(20, 70, 80, 70); // Bottom line

 smooth();
 strokeWeight(12);
 strokeJoin(BEVEL);
 rect(12, 33, 15, 33); // Left shape
 strokeJoin(MITER);
 rect(42, 33, 15, 33); // Middle shape
 strokeJoin(ROUND);
 rect(72, 33, 15, 33); // Right shape

Shape 2 (p. 69) and Shape 3 (p. 197) show how to draw shapes with more fl exibility.

Drawing modes

By default, the parameters for ellipse() set the x-coordinate of the center, the
y-coordinate of the center, the width, and the height. The ellipseMode() function
changes the way these parameters are used to draw ellipses. The ellipseMode()
function requires one parameter that can be either CENTER, RADIUS, CORNER, or
CORNERS. The default mode is CENTER. The RADIUS mode also uses the fi rst and second
parameters of ellipse() to set the center, but causes the third parameter to set half of

2-37

2-38

2-39

Reas_01_001-084.indd Sec2:34Reas_01_001-084.indd Sec2:34 5/23/07 1:20:36 PM5/23/07 1:20:36 PM

35 Shape 1: Coordinates, Primitives

the width and the fourth parameter to set half of the height. The CORNER mode makes
ellipse() work similarly to rect(). It causes the fi rst and second parameters to
position the upper-left corner of the rectangle that circumscribes the ellipse and uses
the third and fourth parameters to set the width and height. The CORNERS mode has a
similar affect to CORNER, but is causes the third and fourth parameters to ellipse()
to set the lower-right corner of the rectangle.

 smooth();
 noStroke();
 ellipseMode(RADIUS);
 fill(126);
 ellipse(33, 33, 60, 60); // Gray ellipse
 fill(255);
 ellipseMode(CORNER);
 ellipse(33, 33, 60, 60); // White ellipse
 fill(0);
 ellipseMode(CORNERS);
 ellipse(33, 33, 60, 60); // Black ellipse

In a similar fashion, the rectMode() function affects how rectangles are drawn. It
requires one parameter that can be either CORNER, CORNERS, or CENTER. The default
mode is CORNER, and CORNERS causes the third and fourth parameters of rect()
to draw the corner opposite the fi rst. The CENTER mode causes the fi rst and second
parameters of rect() to set the center of the rectangle and uses the third and fourth
parameters as the width and height.

 noStroke();
 rectMode(CORNER);
 fill(126);
 rect(40, 40, 60, 60); // Gray ellipse
 rectMode(CENTER);
 fill(255);
 rect(40, 40, 60, 60); // White ellipse
 rectMode(CORNERS);
 fill(0);
 rect(40, 40, 60, 60); // Black ellipse

 Exercises
1. Create a composition by carefully positioning one line and one ellipse.
2. Modify the code for exercise 1 to change the fi ll, stroke, and background values.
3. Create a visual knot using only Bézier curves.

2-41

2-40

Reas_01_001-084.indd Sec2:35Reas_01_001-084.indd Sec2:35 5/23/07 1:20:37 PM5/23/07 1:20:37 PM

Reas_01_001-084.indd Sec2:36Reas_01_001-084.indd Sec2:36 5/23/07 1:20:37 PM5/23/07 1:20:37 PM

37

Data 1: Variables
This unit introduces different types of data and explains how to create variables and
assign them values.

Syntax introduced:
int, float, boolean, true, false, = (assign), width, height

What is data? Data often consists of measurements of physical characteristics. For
example, Casey’s California driver’s license states his sex is M, his hair is BRN, and his
eyes are HZL. The values M, BRN, and HZL are items of data associated with Casey. Data
can be the population of a country, the average annual rainfall in Los Angeles, or your
current heart rate. In software, data is stored as numbers and characters. Examples
of digital data include a photograph of a friend stored on your hard drive, a song
downloaded from the Internet, and a news article loaded through a web browser. Less
obvious is the data continually created and exchanged between computers and other
devices. For example, computers are continually receiving data from the mouse and
keyboard. When writing a program, you might create a data element to save the location
of a shape, to store a color for later use, or to continuously measure changes in cursor
position.

Data types

Processing can store and modify many different kinds of data, including numbers,
letters, words, colors, images, fonts, and boolean values (true, false). The computer
stores each in a different way, so it has to know which type of data is being used to know
how to manage it. For example, storing a word takes more room than storing one letter;
therefore, storing the word Cincinnati requires more space than storing the letter C. If
space has been allocated for only one letter, trying to store a word in the same space will
cause an error. Every data element is represented as sequences of bits (0s and 1s) in the
computer’s memory (more information about bits is found in Appendix D, p. 669). For
example, 01000001 can be interpreted as the letter A, and it can also be interpreted as
the number 65. It’s necessary to specify the type of data so the computer knows how to
correctly interpret the bits.
 Numeric data is the fi rst type of data encountered in the following sections of this
book. There are two types of numeric data used in Processing: integer and fl oating-
point. Integers are whole numbers such as 12, -120, 8, and 934. Processing represents
integer data with the int data type. Floating-point numbers have a decimal point for
creating fractions of whole numbers such as 12.8, -120.75, 8.125, and 934.82736. Processing
represents fl oating-point data with the float data type. Floating-point numbers are
often used to approximate analog or continuous values because they have decimal

Reas_01_001-084.indd Sec2:37Reas_01_001-084.indd Sec2:37 5/23/07 1:20:38 PM5/23/07 1:20:38 PM

38 Data 1: Variables

resolution. For example, using integer values, there is only one number between 3 and 5,
but fl oating-point numbers allow us to express myriad numbers between such as 4.0, 4.5,
4.75, 4.825, etc. Both int and fl oat values may be positive, negative, or zero.
 The simplest data element in Processing is a boolean variable. Variables of this
type can have only one of two values—true or false. The name boolean refers to the
mathematician George Boole (b. 1815), the inventor of Boolean algebra—the foundation
for how digital computers work. A boolean variable is often used to make decisions
about which lines of code are run and which are ignored.
 The following table compares the capacities of the data types mentioned above
with other common data types:

 Name Size Value range
 boolean 1 bit true or false

 byte 8 bits -128 to 127

 char 16 bits 0 to 65535

 int 32 bits -2,147,483,648 to 2,147,483,647

 float 32 bits 3.40282347E+38 to -3.40282347E+38

 color 32 bits 16,777,216 colors

Additional types of data are introduced and explained in Data 2 (p. 101), Data 3 (p. 105),
Image 1 (p. 95), Typography 1 (p. 111), and Structure 4 (p. 395).

Variables

A variable is a container for storing data. Variables allow a data element to be reused
many times within a program. Every variable has two parts, a name and a value. If the
number 21 is stored in the variable called age, every time the word age appears in the
program, it will be replaced with the value 21 when the code is run. In addition to its name
and value, every variable has a data type that defi nes the category of data it can hold.
 A variable must be declared before it is used. A variable declaration states the data
type and variable name. The following lines declare variables and then assign values to
the variables:

int x; // Declare the variable x of type int
float y; // Declare the variable y of type float
boolean b; // Declare the variable b of type boolean
x = 50; // Assign the value 50 to x
y = 12.6; // Assign the value 12.6 to y
b = true; // Assign the value true to b

3-01

Reas_01_001-084.indd Sec2:38Reas_01_001-084.indd Sec2:38 5/23/07 1:20:38 PM5/23/07 1:20:38 PM

39 Data 1: Variables

As a shortcut, a variable can be declared and assigned on the same line:

int x = 50;
float y = 12.6;
boolean b = true;

More than one variable can be declared in one line, and the variables can then be
assigned separately:

float x, y, z;
x = -3.9;
y = 10.1;
z = 124.23;

When a variable is declared, it is necessary to state the data type before its name;
but after it’s declared, the data type cannot be changed or restated. If the data type is
included again for the same variable, the computer will interpret this as an attempt to
make a new variable with the same name, and this will cause an error (an exception to
this rule is made when each variable has a different scope, p. 178):

int x = 69; // Assign 69 to x
x = 70; // Assign 70 to x
int x = 71; // ERROR! The data type for x is duplicated

The = symbol is called the assignment operator. It assigns the value from the right side
of the = to the variable on its left. Values can be assigned only to variables. Trying to
assign a constant to another constant produces an error:

// Error! The left side of an assignment must be a variable
5 = 12;

When working with variables of different types in the same program, be careful not to
mix types in a way that causes an error. For example, it’s not possible to fi t a fl oating-
point number into an integer variable:

// Error! It’s not possible to fit a floating-point number into an int
int x = 24.8;

float f = 12.5;
// Error! It’s not possible to fit a floating-point number into an int
int y = f;

3-02

3-03

3-04

3-05

3-06

3-07

Reas_01_001-084.indd Sec2:39Reas_01_001-084.indd Sec2:39 5/23/07 1:20:39 PM5/23/07 1:20:39 PM

40 Data 1: Variables

Variables should have names that describe their content. This makes programs easier
to read and can reduce the need for verbose commenting. It’s up to the programmer
to decide how she will name variables. For example, a variable storing the room
temperature could logically have the following names:

 t
 temp
 temperature
 roomTemp
 roomTemperature

Variables like t should be used minimally or not at all because they are cryptic—there’s
no hint as to what they contain. However, long names such as roomTemperature
can also make code tedious to read. If we were writing a program with this variable,
our preference might be to use the name roomTemp because it is both concise and
descriptive. The name temp could also work, but because it’s used commonly as an
abbreviation for “temporary,” it wouldn’t be the best choice.
 There are a few conventions that make it easier for other people to read your
programs. Variables’ names should start with a lowercase letter, and if there are multiple
words in the name, the fi rst letter of each additional word should be capitalized. There
are a few absolute rules in naming variables. Variable names cannot start with numbers,
and they must not be a reserved word. Examples of reserved words include int, if,
true, and null. A complete list is found in Appendix B (p. 663). To avoid confusion,
variables should not have the same names as elements of the Processing language
such as line and ellipse. The complete Processing language is listed in the reference
included with the software.
 Another important consideration related to variables is the scope (p. 178). The scope
of a variable defi nes where it can be used relative to where it’s created.

Processing variables

The Processing language has built-in variables for storing commonly used data. The
width and height of the display window are stored in variables called width and
height. If a program doesn’t include size(), the width and height variables are both
set to 100. Test by running the following programs

println(width + ", " + height); // Prints "100, 100" to the console

size(300, 400);
println(width + ", " + height); // Prints "300, 400" to the console

size(1280, 1024);
println(width + ", " + height); // Prints "1280, 1024" to the console

3-08

3-09

3-10

Reas_01_001-084.indd Sec2:40Reas_01_001-084.indd Sec2:40 5/23/07 1:20:39 PM5/23/07 1:20:39 PM

41 Data 1: Variables

Using the width and height variables is useful when writing a program to scale to
different sizes. This technique allows a simple change to the parameters of size()
to alter the dimensions and proportions of a program, rather than changing values
throughout the code. Run the following code with different values in the size()
function to see it scale to every window size.

size(100, 100);
ellipse(width*0.5, height*0.5, width*0.66, height*0.66);
line(width*0.5, 0, width*0.5, height);
line(0, height*0.5, width, height*0.5);

You should always use actual numbers in size() instead of variables. When a sketch is
exported, these numbers are used to determine the dimension of the sketch on its Web
page. More information about this can be seen in the reference for size().
 Processing variables that store the cursor position and the most recent key pressed
are discussed in Input 1 (p. 205) and Input 2 (p. 223).

 Exercises
1. Think about different types of numbers you use daily. Are they integer or
 fl oating-point numbers?
2. Make a few int and float variables. Try assigning them in different ways. Write the
 values to the console with println().
3. Create a composition that scales proportionally with different window sizes.
 Put different values into size() to test.

3-11

Reas_01_001-084.indd Sec2:41Reas_01_001-084.indd Sec2:41 5/23/07 1:20:39 PM5/23/07 1:20:39 PM

