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Abstract

This project attempts to describe the cycling expe-
riences of several riders in New York City through a
series of visualizations. Specifically, I am interested
to discover if riders similar to myself share a com-
mon experience through which a sense of connection
could be derived.

Cyclists were encouraged to record their travels
using their personal mobile devices running Mobile
Logger, a custom iPhone application. Log data was
uploaded by the application to an online database in
near real-time during each ride. This data was ana-
lyzed and filtered to provide source material for the
resulting visualizations and system “dashboard” at
http://mobilelogger.robertcarlsen.net.
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Introduction

This is an exploration in creating a sense of connec-
tion among cyclists through self-quantification and

visualization. The project has two principle compo-
nents: data collection using personal mobile devices
and visualization.

Iride a bicycle daily through NYC, and encounter
many other cyclists, walkers and drivers. We pass
each other in a moment, or perhaps share a lane
for a bit and then continue on our separate ways.
Can we create a sense of connection by sharing our
experiences? How does my 5 mile, 25 minute ride
from Greenpoint to the East Village compare to
someone riding from Queens? What does a ride
around Prospect Park share with one in Central
Park? What’s the loudest part of the city for a
cyclist? Which routes are ridden most frequently
and at what time of day?

What do these experiences look like? How could
they be recorded? What could we learn about our-
selves and our world if there was a ubiquitous net-
work of sensors collecting data about the environ-
ment as we experience it? Would analysis and visu-
alization reveal trends and patterns in the aggregate
behavior of participants in the network?

Personal Statement
I’'m an avid cyclist. I ride as a commuter, enthusiast

and occasional racer.
I can get just about anywhere in the city, when-



ever I want and under my own power. It also pro-
vides fitness and for many people, employment. It’s
faster than walking and more maneuverable than
driving. In dense city congestion it can be faster
than mass transit. It’s a cheap way to get around.
But above all. . .it’s just FUN!

Cycling in the city—and what I really mean by
that is riding among several-ton moving vehicles,
in all sorts of weather, often on roads not designed
to accommodate bikes—is by some estimation, in-
sane. I could describe close calls, spin tales of get-
ting from Midtown to the East Village in less than
10 minutes at 6pm on a weekday or talk about an
epic ride past Nyack where I bonked on the return
trip—but there’s something really interesting about
quantifying our experiences; somehow they become
more tangible.

I first felt the excitement of self-quantification
when using a heart rate monitor for training, and
later when using a PowerTap cyclecomputer which
could download ride logs to my computer. Hav-
ing numbers for heart rate, speed and power pro-
vided nearly endless bragging rights (and sometimes
shame) among my cycling teammates. It was a way
for us to connect our individual experiences in a
manner that we could understand and compare.

I’'m certainly not the only cyclist on the roads. I
see scores of other commuters as well as couriers,
delivery riders and pedicabs—from folks leisurely
riding around the Park to kitted racers in a pace
line. However, apart from a friendly head nod, or
occasional exchange of choice words I generally feel
isolated as I head from here to there; in the mar-
gins of the roads (or sometimes splitting lanes), over
the bridges with their scenic views of the city sky-
line, in the frenetic bustle of 5th Ave. Midtown at
rush hour and the desolation and darkness of post-
midnight industrial Greenpoint and Queens.

I wonder, what do these other people experience
while riding through the city? I have a clear under-
standing of what it feels like to me to be a cyclist in
New York City. Is that experience a common one
among other riders? How could I foster a sense of
connection by relating through this shared experi-
ence?

There are several ways of describing an experi-

ence. We can say that we’ve ridden some number
of miles in a day, or show the raw data numbers. Vi-
sualizations are a manifestation of real events with
which I’'m hoping to make an emotional connection
between the riders and the viewer.

Background

This project really began in my first courses at I'TP,
resulting in a project which I called CycleSense and
the subsequent visualizations created from it’s data.
CycleSense attempted to provide me with a di-
rect perception of the unseen space behind my bike
while riding through traffic, with a goal of increas-
ing spatial awareness through haptic feedback. A
set of sonar range finders measured bilateral, rear-
ward distance between my bike and traffic, driving
helmet-mounted vibration motors with increasing
intensity as the open space diminished.
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Figure 1: CycleSense: Proxemic visualization

However, the range needed to positively inform
action at the speed of cycling in traffic is better
suited for visual and aural sensing, rather than the
ultrasonic sensors which had a maximum range lim-
ited to about 25 feet. While the real-time feedback
goal was not entirely achieved, visualizations of the
data provided me with insight into how space is



maintained by traffic and myself as a vehicle in the
streets (it’s alarmingly tight at times).

The visualization mapped the range values onto
Edward T. Hall’s Proxemic[2] distance categories
of Intimate, Personal, Social and Public to provide
context (fig 1). Ten inches of space between myself
and a multi-ton vehicle at 20 MPH can be described
as intimate proximity in this system. Imagine being
within an intimate space with someone, then imag-
ine them as a large truck barreling past you and
you can get the idea.

I continued to explore this topic with
seismi{c}ycling, which mapped bumpiness I
experienced while cycling through New York City
over several months.  Where CycleSense used
custom hardware mounted to the bicycle, I was
interested in using a personal mobile device, an
iPhone which I already carried, to act as a sensor
in this project. By using my mobile phone with
custom software, I was able to record more than 90
rides over the duration of the project. It became
very easy to record consistently when I already had
the sensor and data logger in my pocket. Using
the network connection provided by the phone,
I was able to push the readings to a database in
real-time, streamlining data collection even further.

The visualization created for seism{c}ycling was
an animated map, tracing each ride in turn, depict-
ing the biggest bumps as glowing red circles. The
entire visualization would scatter apart with each
new bump, providing a sense of being physically
rattled by rough roads. Eventually these spots ac-
cumulated to paint a portrait of my experience of
the roads in NYC as a cyclist. While the end re-
sult was very satisfying for me, it was still centered
on my singular experience. I wondered, what about
other riders? Do we share a common experience? If
0, in what ways? How are our experiences unique?
I knew that the project needed to be expanded to
include other people.

Work Description

Overall, the work involved with this project fol-
lowed the seven steps for data visualization as out-

lined by Ben Fry in his book “Visualizing Data”[1]:

e Acquire Obtain the data, whether from a file
on a disk or a source over a network.

e Parse Provide some structure for the data’s
meaning, and order it into categories.

e Filter Remove all but the data of interest.

e Mine Apply methods from statistics or data
mining as a way to discern patterns or place
the data in mathematical context.

e Represent Choose a basic visual model, such as
a bar graph, list, or tree.

e Refine Improve the basic representation to
make it clearer and more visually engaging.

e Interact Add methods for manipulating the
data or controlling what features are visible.

A significant challenge in this project was imple-
menting data acquisition. Existing studies of cy-
cling has largely relied on cyclist survey[5], case-
study interview[3], or logging cycling at a series of
fixed locations. New York City Department of City
Planning publishes an annual cycling map!, depict-
ing existing and planned bicycle route and green-
ways (fig 2). Their methodology in generating the
map is described on the department’s website:

The existing and planned routes are the
result of extensive fieldwork involving
analysis of traffic conditions and assess-
ment of the connectivity, accessibility, and
safety of the network, as well as meetings
that sought community input.

However, I am interested in studying and com-
paring my personal experience with that of other
cyclists, something which is only indirectly repre-
sented by survey and only inferred by fixed, exter-
nal observation.

The data collection portion of this project uti-
lizes a mobile logging application to record each
rider’s experience. The application uploads data to
a server for storage and later analysis. Each rider
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Figure 2: Lower Manhattan bicycle routes. Taken
from the 2010 NYC Cycling Map.

may view their own data within the application and
can see an aggregate view of all the data on the Mo-
bile Logger website?.

I was inspired by the Personal Environmental Im-
pact Report (PEIR) created by the Urban Sensing
group at UCLA, as described by Nathan Yau, a de-
veloper of PEIR, in the book “Beautiful Data”[4].
That project also uses a mobile application, but logs
position at a far longer interval. It determines the

mode of transportation and estimates a user’s “im-
pact on and exposure to the environment.”

Post collection, I analyzed the data looking for re-
lationships and trends among riders and locations.
This analysis is critical for the eventual visualiza-
tions. I have an initial set of questions which I'm
looking to answer: Do several riders experience sim-
ilar conditions at the same place and time? Where
do riders go? Where do they originate? Where do

they congregate? More personally, how do other
riders’ experiences relate to my own?

Initial analysis was implemented using Google
Maps to plot each ride. It was a useful tool to
identify the location of new events and to verify
the integrity of recorded data. Through this tool
several issues with location accuracy and network
connectivity were identified.

Further exploration of the ride data was done us-
ing R, the language and environment for statistical
computing and graphics®. Several aspects of ride
data were investigated, starting with simple plots
of event routes then later graphs of the frequency
of ride times and locations. R was also used to filter
and clean the raw data.

Several graphs and plots generated in R (using
the excellent ggplot2 library?) were further manipu-
lated in graphics software to create initial, static vi-
sualizations, including a world map of Mobile Log-
ger users. Graphs of ride distribution by time of
day, day of week and location also helped to cate-
gorize data.

Ultimately, an animated visualization of ride data
in New York was created using Cinder, an open-
source C++ framework®. This visualization de-
picts events in a 3D environment primarily by loca-
tion and time, showing similar inferred experiences
swirling about each other.

Before any of this, however, data needed to be
collected and tools to achieve this needed to be au-
dited and created.

Ubiquitous Sensing

Sensors are increasingly being embedded in every-
day devices and infrastructure. Many modern lap-
top computers include a “sudden motion sensor”
designed to save the hard drive in the case of a
fall. Buildings can include climate and movement
sensors—which can be used to coordinate dampers
to help stabilize the building in high winds or an
earthquake. Small wearables like the FitBit” or
DirectLife® track activities like walking and run-
ning as well as restlessness during sleep. Portable
devices, like the iPhone include a small array of sen-



sors, which can record movement and orientation,
sound levels, location, photos and video. Fleets of
cars and trucks include GPS devices not only for
navigation but for tracking the vehicle’s location
and speed.

However, the real impact of these sensors be-
comes realized when imagining them networked.
Adam Greenfield describes powerful scenarios re-
sulting from “ubiquitous urban sensor networks.”
He envisions advancement in sensor technology pro-
viding for a pervasiveness in which urban infrastruc-
ture, such as road surfaces, sidewalks and buildings
are addressable, queryable and therefore scriptable,
providing a programmatic interface to the modern
city.”

What if each computer with a sudden motion
sensor could report anomalies in real-time? Could
this serve as an earthquake early warning system,
as Quake Catchers is trying to implement?'® Using
GPS-enabled mobile devices, services like Waze pro-
vide navigation directions in exchange for users pas-
sively providing traffic conditions, which then in-
forms the service’s direction algorithm.'! SenseNet-
works'2 has released the CabSense'? application us-
ing the NYC Taxi GPS database and the GPS fea-
ture of iPhone and Android devices to point users
to the best places to catch a cab.

Going mobile

Two broad categories of sensors are fixed and mo-
bile. Fixed sensors have the benefit of being able
to directly connect to existing power and commu-
nications infrastructure. They can be installed at
an appropriate density and dispersion for the en-
vironment and what they are designed to monitor.
For example, air quality sensors in a sparsely pop-
ulated area may have different requirements than
sound sensors in a city. They can remain logging
when no one is present. They can be installed in
inaccessible or uninhabitable locations which never-
theless would be useful to monitor—subway tracks,
pipelines, transit vehicles, etc.

However, when trying to describe how people
move through an environment, the best they can

Figure 3: MIT’s Copenhagen Wheel

do is to infer these experiences from afar. Mo-
bile sensors, specifically those embedded in mobile
devices, prioritize sensing a personal experience.
Of course, even these sensors are limited to their
specific capacity—such as movement, location, or
orientation—but have the great advantage of being
representative of an individual in that environment.

Mobile data collection presents significant diffi-
culties. Aside from persistent challenges of securing
reliable power and communication, these sensors
have to be deployed to people willing to carry them.
In the case of the FitBit a user needs to acquire and
use a new piece of hardware. The same challenge
faces Nike+ devices and initiatives like Copenhagen
Wheel, a project by the MIT Senseable City Lab'4
(fig 3), a veritable environmental lab built into the
hub of a rear bicycle wheel.

Using personal mobile devices as sensors in this
ubiquitous network, the aforementioned challenges
notwithstanding, provides an advantage that they
are already carried by owners and are already used
daily. The threshold for encouraging greater par-
ticipation drops sharply when you already have the
necessary tool in your pocket. This assumes that ca-
pable devices are widespread—GPS-enabled mobile
devices are becoming prevalent enough to use them
for large-scale personal data collection. Nielsen
reports that (sensor-laden) smartphones make up
27% of the wireless market in the US, and are ex-



pected to reach 50% by the end of 2011.1%

Mbobile application

This becomes a trade-off between depth and
breadth. Adhoc, mobile sensor widgets can be de-
signed to record rich data beyond what is avail-
able in existing mobile devices—like air quality,
heart rate, stress and breathing—but each device
starts with zero units in the world. Apple intro-
duced over 20 million GPS-enabled iPhone devices
in 2009'6—quite a head start for my project. If
useful data about individual experiences and rela-
tionships could be told using the relatively limited
sensors available on existing mobile devices, what
would that look like?

Figure 4: Mobile Logger on my bicycle

To that end, I released an iPhone application,
named Mobile Logger!”, to facilitate this user-
centric data collection. It’s available as a free down-
load on the Apple App Store and as open-source
code on GitHub'® under the GNU Public License.
The application was written in JavaScript using the
open-source Titanium Appcelerator framework!?,

which is designed for cross-platform distribution to

iPhone and Android platforms, as well as upcom-
ing support for BlackBerry. This choice was made
to allow for flexibility in the future porting of the
application to a wider selection of devices.

Mobile Logger acts as a dashboard for some-
one interested in recording their movement. The
home screen presents a compass-like heading dis-
play, along with current speed, sound levels, acceler-
ation force, trip distance and duration. Each log is
stored on the device and can be inspected to reveal
its route on a map. The log file can be exported via
e-mail in several common formats. While logging,
the data is optionally pushed to an online database
at frequent intervals.

To date, 164 unique devices have uploaded log
data globally representing 239 events longer than
1 minute, with approximately 10 active riders in
NYC. Most of these new devices appeared after
public release of the application in the Apple App
Store. In addition to the ambient logging, I pro-
moted a call for participation to coincide with Earth
Day on Thursday, April 22nd with the intention of
benefiting from a tendency for people to ride a bi-
cycle on that day.

The application has been used in every conti-
nent, save Antarctica. To illustrate the global
reach of deploying the application on an already
established platform, the Mobile Logger Dashboard
at http://mobilelogger.robertcarlsen.net displays a
map of every location where the application has
been used for longer than one minute, as well as
tallies of unique devices, events, duration and dis-
tance.

Collection

To facilitate collection of log data from partici-
pants I setup an online database and rudimentary
application programming interface (API) for the
mobile devices to utilize. The database used is
Apache CouchDB, a document-oriented, schema-
less database which can easily be interfaced via a
“RESTful JSON API that can be accessed from
any environment that allows HTTP requests”2°.
CouchDB was chosen for several reasons, among
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Figure 5: Global users of Mobile Logger

them:

e Most mobile devices that can access the inter-
net support HTTP requests, eliminating the
need for specific software libraries to commu-
nicate with the database.

e Without a strict schema, devices with various
sensor capabilities can be easily included in the
database, simply adding new fields as neces-
sary.

e CouchDB includes facilities for easy replica-
tion, or cloning, of the database. This can be
used to archive the live database, to make a
copy which can then be queried for exploration
without affecting real-time upload from mobile
devices, for scalability as demand may increase
requiring more server capacity and eventually
for sharing the data with other interested re-
searchers.

e Queries can be constructed in JavaScript using
the MapReduce paradigm to provide powerful
ways to aggregate the collected data.

e CouchDB can scale to hundreds of millions of
documents. Each sample in a log file is treated
as a separate document and a typical 24 minute
log file may contain 1600 samples.

To provide a simplified interface for mobile de-
vices and to provide a layer of abstraction between
the database itself and open internet a middle-
ware layer was created using Sinatra, a lightweight,
Ruby-based microframework?!. Sinatra made it
easy to expose only the needed methods for adding
and retrieving log data from the database. This
provides security by limiting the database access
only to the API methods via the middleware, en-
ables flexibility in changing the location or name of
the actual database and allows for future scalability
through sharding, or splitting the database among
several servers to distribute the load.

The middleware layer also provides access to the
data for the Mobile Logger Dashboard site, and may
be used in a future version of the Mobile Logger
application for real-time feedback about the overall
state of the system. Eventually, this API may en-
able third-parties to access log data for their own
analysis and visualization.

Dirty Data

The raw data collected from participants can be
very messy. GPS often misreports location amongst
interfering objects such as tall buildings in cities.
Also, this project is interested in the travels of cy-
clists in New York City, but there is no physical
limitation preventing users from logging any type
of movement (or no movement at all) anywhere in
the world. The data needed to be filtered, cleaned
and sorted before meaningful analysis could begin.
Filtering specific locations was achieved by geohash-
ing the location data. Geohashing creates a unique
string of letters and numbers for latitude and lon-
gitude pairs, which represents a decreasing rectan-
gular area by increasing hash length.?? A hash of 6
characters such as “drbrsn” represents a 600 me-
ter wide area of Lower Manhattan (fig 6). The
database can be queried for specific hashes to get
data associated with particular locations.??
Filtering events by mode of travel is another chal-
lenge. A simple solution is to factor the events
by average speed, assuming that bicycles typically
travel faster than walking, but slower than driv-
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Figure 6: NYU geohash. Displayed with David
Troy’s geohash demonstrator.

ing. However, I can often get around the city faster
than a car, depending on congestion and time of
day. Maximum speed can provide more insight, al-
though a car may go slower in an intra-city trip than
I ride descending one of the bridges. Investigating
the route may also help, assuming that a bicycle is
not likely to travel on highways, and vehicles not on
bikeways. Unfortunately, in both regards, this is a
false assumption in the city. Ultimately, some naive
filtering with manual analysis was necessary to iso-
late cycling events from the rest of the data. The
greater challenge is to identify trends and categories
in the remaining ride data.

Bias

In considering the collected data it becomes appar-
ent that there are specific biases which should be
addressed in order to make an honest assessment
about anything derived from it. The project con-
siders cycling as the primary activity, and as such
other modes of transportation have been eliminated
from consideration in the data. While using a mo-
bile device did tap into a large pool of existing users,
the iPhone is still a limiter of possible participants.

Rather than targeting all cyclists in New York, this
requires participants to be a cyclist (in New York
City) and be an iPhone owner. While a targeted
study may identify what portions of these popu-
lations actually overlap, anecdotally it seems that
there is certainly a demographic bias.

From a technological standpoint, Mobile Log-
ger places significant drain on the device’s battery.
Users have reported that the maximum logging du-
ration on a full charge has been about 2 hours. In
my personal use, a typical 25 minute commute con-
sumes 15-20% of the battery charge (on an iPhone
3GS). I could get through a day with two logging
sessions and light use (e-mail, web, infrequent voice
calling) on a single charge. However, I often would
recharge the phone over the course of the day.

These considerations seem to have made the ap-
plication most suitable for logging trips less than
30 minutes in length, where the device could be
used solely for data collection and have limited use
otherwise or be recharged during the day. The ap-
plication and use case have been designed for riders
like myself. Given this project’s focus in wanting to
see what riders like myself are experiencing I don’t
feel that this is a deleterious bias, but something
certainly to be aware of when considering the data.

Finally, I need to mention that data from my de-
vice is by far the most prevalent in the Manhattan
area, representing 55% of the recorded samples.

Analysis

Described earlier, geohashing provides a mechanism
to isolate specific locations in the database. The
adjacent hashes of “drbr” and “dr72” encompass
most of Manhattan and Brooklyn, were ride data
is concentrated. Querying the database for these
locations returns approximately 160,000 samples,
roughly 3,000 minutes of log data (fig 7). A typ-
ical event contains 1,600 samples at 1Hz resolution.

In Manhattan, the raw data indicates 150 events
were recorded by 17 devices. Simple filtering of
events where the maximum speed was less than
60km/h (generally faster than a bicycle travels on
flat ground) reveals that my device was the only one



Figure 7: New York City ride data. Colored by
device.

used in the Manhattan data set to record a trip by
car. Further filtering of devices which recorded less
than two minutes of data leaves 10 devices. I be-

lieve that three of these device IDs represent testing
or simulator devices.

Rides most often occurred at typical morning and
evening commute times, with greatest density of
samples in the 8-9AM and the 6-7PM hours (fig
8). There is also a significant dispersion of my ride
files throughout the evening, reflecting riding home
from ITP at late hours.
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Figure 8: Log samples by hour. Colored by device.
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Ride activity trends upwards on a daily basis with
a peak on Fridays (fig 9). Low activity on weekends
seems to confirm that the data reflects commuting
rides. The pattern is interesting, but it’s difficult to
extrapolate whether this is indicative of anything
other than the weekly schedules of this small group
of riders.

Three events have unusually long durations (more
than 10 hours), appearing to have been accidentally
resumed for a few moments long after the intended
logging period ended. Filtering these events as well
as those with durations of less than 1 minute leaves
123 events with an average duration of 24 minutes.
One event has several breaks of 20-30 minutes, with
an overall duration of 160 minutes. I spoke with the
rider about this and he mentioned that he consid-
ered a trip, including stopping at various locations
for errands, as one event. I had previously consid-
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Figure 9: Log samples by day of week. Colored by
device.

ered each segment of a trip as separate events, so
his was an illuminating perspective which needs to
be considered.

Ride data was concentrated in Lower Manhat-
tan and Brooklyn, again likely due to the stated
sampling bias (fig 10). The densest location is the
Brooklyn entrance to the Willamsburg Bridge. The
bridge path and routes to I'TP’s East Village loca-
tion are the most frequently represented, as well as
a route through Queens to the 59th Street Bridge,
likely from my own commute to Midtown.

Regarding GPS performance, the mean accuracy
for this data is 60 meters, with a best reported ac-
curacy of 9 meters. Mean altitude is 18 meters
(with 13 and 23 meters at lower and upper 25th
percentiles), however the mean altitude accuracy is
62 meters, so I suspect that the altitude data is not
entirely reliable (although these values do seem con-
sistent with external altitude data available via the
NYC Data Mine site??).

An assumption I've made is that Mobile Logger
would be used for ground-based travel. However,
New York has many tall buildings and bridges. In-
deed, there are several altitude readings in the 40
meter range, the approximate height of the Manhat-
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Figure 10: Ride density

tan, Willamsburg and Queensboro bridges which I
frequent. There are also small groupings of sam-
ples with recorded altitudes at 200 and 500 meters
which have an accuracy of 228 meters and have been
filtered.

The average moving speed of rides, filtering ze-
roes, for the entire data set was 18.5 km/h with a
standard deviation of 7.6 km/h (fig 12). My av-
erage speed was fastest (of this small set) at 20.6
km/h, but I have company with other riders at
20.1 km/h and 18.5 km/h. There are two devices
with markedly slow average speeds. It’s difficult to
tell if these devices were used for walking, very ca-
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Figure 11: Manhattan altitude readings, filtered.

sual riding, or suffered from poor GPS reception.
The speed accuracy of the device seems to improve
at greater velocities, such as driving and cycling
quickly. Walking, even briskly, often reports zero
speed.
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Figure 12: Average speed by device

Average distance for the rides was 8km with a
standard deviation of almost 5km, including several
rides over 20km and one at 32km. My typical ride
length was 8.7km and it appears like there is an-
other rider who rides a similar distance frequently

(fig 13). A by-product of GPS inaccuracy is incor-
rect distance estimates when plotting between raw
coordinates. If several location readings are off by a
large amount, distance can quickly, and erroneously
accumulate. One promising technique for filtering
raw GPS data is outlined by Julien Cayzac, titled
“The Cumulative Displacement Filter.”?® I'm ea-
ger to apply this technique to the ride data in future
development.
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Figure 13: Event distances. Colored by device.

Audio levels were recorded using a digital scale
(-60 to 0 dbF'S) and it is difficult to convert these
values into a generally comparable unit (dbSPL)
without proper microphone calibration. Neverthe-
less, relative assessment can be made using these
values. The mean sound level recorded was -23
dbFS, with a standard deviation of 8.2 dbFS. How-
ever, little is known about circumstances of the de-
vice while recording, specifically it’s location on the
participant. It could have been in a variety of places
which may affect detected sound levels, such as in
a pocket, backpack or attached to the bicycle itself.

The accelerometer values can indicate two as-



pects of the device’s experience: orientation and
movement. Since the application is recording at a
one second resolution, subtle device movement is
lost in subsequent downsampling. However, over-
all device orientation can be inferred by analyzing
a distribution of the available values (fig 14). Peak
densities for X,Y and Z-axis accelerometer forces
indicate that the (iPhone) device was primarily up-
right, tilted right and somewhat face down. I keep
the device in the same location and position for each
log, in a pocket on the shoulder strap of my back-
pack, which keeps it upright and angled to it’s right.
T always put the device in the pocket facing forward,
but when I’'m in a riding position my chest is point-
ing downward as I reach for the handlebars. Since
my logs account for 55% of the data, it’s unsurpris-
ing that my consistent position is apparent.
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Figure 14: Overall accelerometer forces

The magnitude is a vector created from all three
axes, and should have a value of 1.0 when the device
is stationary, regardless of orientation. The distri-
bution of magnitude values should indicate what
degree of movement has been experienced. There is
a noticeable spike at 3g, which is the upper specifi-
cation of the sensor on the device and may indicate
significant jostling.

Weather

During 34-day window in which this data was col-
lected (March 29-May 2), the daily average tem-
perature ranged from 46-77°F with a mean of 59°F,

minimum of 40°F and maximum of 92°F.2¢ It seems
as though most of the riding occurred in mild tem-
peratures. Rain was recorded for 10 days of this
period, accumulating 7 inches of water.
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Figure 15: Sample count by daily average temper-
ature.

Wind speeds over this time averaged 10 km/h,
including at least three days with appreciable gusts.
This wind may have had an effect on ride speed,
although it’s difficult to determine solely through
the data. Personally, I recall several days where my
trips were buffeted by wind on the bridges.
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Figure 16: Rider speed colored by wind speed



Visualization

While statistical analysis and numerical representa-
tion are indispensable in identifying categories and
trends while mining the data set, eliciting an emo-
tional response from a table is a difficult proposi-
tion for me. In cycling training software numeric
summary tables, graphs and plots are often used to
display the logged ride data. The graphs honestly
depict the data, but how do these visuals really con-
vey the recorded experience? Various plots which
have become common in cycling training analysis
certainly do provide some insight into the numbers,
at the expense of having to learn to decipher them.
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Figure 17: Golden Cheetah

Golden Cheetah?”, an open-source cycling anal-
ysis application, implements several of these typ-
ical displays. This application does indeed repre-
sent ride data in tabular format, identifying aver-
age, maximal values and aggregate values (fig 17).
It also displays the data in a time-based graph, over-
laying several metrics along a vertical axis. One
particular plot, popularized by Dr. Andy Coggan,
is the Pedal Force / Pedal Velocity scatterplot?®
(fig 18). This plot is highly revealing of the types
of physiological exertion demanded of a rider during
an effort. However, to a wider audience it is highly
opaque. How could these visualizations be done in
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a way that is immediately apparent and meaningful
to an uninitiated viewer?

My goal is not to single Golden Cheetah out, but
to use it as representative of cycling analysis soft-
ware (full disclosure: I have been a developer with
the project for several years).
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Figure 18: Pedal Force / Pedal Velocity plot for an
individual time trial effort

There are great examples of visualizations which
communicate their data concisely and are visually
striking enough to resonate emotionally with view-
ers. Aaron Koblin’s Flight Patterns (fig 19) show
the daily patterns of air traffic across the United
States.?? Cabspotting (fig 20) by Stamen Design
also tracks taxis, displaying their routes over time in
San Francisco.?* My own project, seismi{c}ycling
(fig 21) painted a portrait of road roughness I ex-
perienced over several months in the Fall of 2009.3!

What does it look like?

The visualizations in this project consist of three
broad components: the in-application map, the
website “dashboard” and the animated off-line vi-
sualization.



Figure 19: Flight Patterns by Aaron Koblin

cabspotting

Figure 20: Cabspotting by Stamen Design

Within Mobile Logger, each log stored on the de-
vice can be displayed on a map, with a subset of
the data points plotted to depict that log’s route
(fig 22). Each data point can be tapped to display
the speed and sound levels at that moment. This
was implemented to provide value to the end user,
beyond and apart from the centralized data collec-
tion component I am most interested in. I wanted
the application to be able to stand alone, without
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Figure 21: Seismi{c}ycling

the online database if necessary, or if the user pre-
ferred to opt out of sharing their data.

On the Mobile Logger Dashboard website there is
a map displaying the location and duration of global
use of the application and an animated marker in-
dicating the location of the most recently logged
event. This has created an immediate and profound
effect in generating a sense of connection for me.
I find myself frequently checking the map to look
for new locations representing other people logging
around the world. While this is a departure from
the intended study of New York City cyclists, the
excitement of acknowledging global use warrants
mention.

An animated visualization was created to display
the ride data in a fluid, aesthetic way. This visu-
alization plots rides in various ways in an attempt
to show now only the characteristics of each ride,
but also of how they relate to one another. It was
designed to be standalone and installed in a semi-
public location.



Figure 22: Mobile Logger map view

Personal data

I've considered the issue of personal data privacy
heavily. Each of these logs contains one-second res-
olution of the location of individual participants.
Although the application doesn’t record personally
identifiable contact information, each log (unless
disabled) contains a unique identifier for the de-
vice. Over time a pattern of movements could be-
come unique enough to isolate an individual. In an
era when personal information is increasingly vol-
unteered and/or unknowingly collected, is location
privacy a specific concern? Is the solution to bal-
ance the power between the participant and users
of that data through transparency? Rather, are the
stated principles®? of Sense Networks sufficient?

e People should own their own data
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e People have a right to privacy

e People should receive a meaningful benefit in
exchange for sharing data

e Aggregate anonymous location data should be
used for common good

In consideration of these points, I've made delib-
erate decisions regarding the data collected by this
project. I've opted not to request personal contact
information from any participant, and have addi-
tionally provided a means for participation with an
anonymous device identifier. The data uploading
feature of Mobile Logger may be disabled at any
time, without any detriment to the usability of the
application for the end user. By providing their
data to the Mobile Logger system, they can see
their place among other users on the Mobile Logger
Dashboard and associated visualizations. I'm also
considering other ways for participants to more di-
rectly benefit from sharing, perhaps with personal-
ized data display on the Dashboard site, or real-time
status of the system within the device application.

If the system were to fully embrace the Sense
Networks principles, a method would need to be
implemented for any user to remove their histori-
cal data from the database as desired. This is my
primary hesitation in opening the data set to third
parties, although I'm interested in eventually mak-
ing the data available to facilitate the final principle
of working for the common good.

Where do we go now?

The stated goal was to foster a sense of connection
among strangers through sharing common experi-
ences, using these visualizations as a way to make
abstract numbers meaningful to uninitiated view-
ers.

While there have only been a few riders in New
York logging themselves, I have certainly had a pal-
pable shift in my perception of riding through the
city. Perhaps it’s because I've been looking over
my own ride data lately, but I often imagine what
other riders’ log files would say and how ours would



compare. One Mobile Logger user who also lives in
my neighborhood saw screenshots of my log routes
and contacted me, mentioning that he lives nearby
and offered to meet up.

I have progressively altered my routes in the
months I have been tracking my rides. Generally,
I strive for the most direct route, and the mapping
feature of the mobile app enables me to immedi-
ately see if I can make improvements. However, [
often prefer less-trafficked or quieter roads to busier
ones, and will look for a bike lane if it’s convenient.

When I cross paths with another rider, I imag-
ine a ribbon tracing our paths and extending into
possible future routes. I also like to consider where
they’ve been and think about how my ride could be
influenced by their route. I have also begun to strike
up conversation with other riders, often describing
Mobile Logger and encouraging their participation
which is generally well-received. In the end, how-
ever, there are still many riders and vehicles around
and I still get cut off, have close calls and epic rides
(and make some ill-advised maneuvers of my own).

The preliminary global data has had a profound
effect on me. I noticed one day that while I was
commuting home after work in Manhattan there
was a training ride in Philadelphia, an evening drive
in Bristol, UK and an early morning walk to the
beach in southern Australia. This provides me a
sense of connection to these far away strangers.
Even in this abstract representation, I feel less alone
knowing that other people are also moving about.
Of course, technology isn’t needed to prove this, but
sometimes a construct helps to shift perspective.

I’'m pursuing a greater density of data through
encouragement of wider rider participation. Pub-
lic, aggregate, real-time visualizations will help pro-
mote persistent participation if individual contri-
butions can be recognized by the user. I'd like to
solicit more feedback from participants about their
experiences. Perhaps providing a mechanism to tag
or annotate ride data could assist with categoriza-
tion.

I’'m also very interested in extending the mobile
application to record external sensors. I would very
much like to log physiological data such as heart
rate, breathing rate / depth and stress levels as well
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as environmental data. Perhaps this can be accom-
plished through various levels of commitment on the
part of the rider to incorporated several devices for
self-quantification. Ideally, the mobile device will
act as a hub for storage and transmission.

I’ve published the project’s process in the spirit of
open source. This includes releasing the logger ap-
plication source code, documenting collection meth-
ods and describing the visualization process. Even-
tually, T aim to publish the collected data for further
analysis. Hopefully, this will enable other people to
extend and augment the work in ways I haven’t en-
visioned.
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